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Abstract—3-D road surface modeling has become an essential
part of modern algorithms for road pothole detection when
3-D road point clouds are available. This paper introduces a
scale-adaptive road pothole detection and tracking framework.
It first fits a quadratic surface to the 3-D road point cloud,
generated using GPT-SGM, a state-of-the-art disparity estimation
algorithm. The surface modeling process also incorporates the
normal vector information, obtained by three-filters-to-normal
(3F2N), an ultra-fast and accurate surface normal estimator.
By comparing the actual and modeled 3-D road surface point
clouds, the pothole point clouds can be extracted. Finally, the
discriminative scale space tracking (DSST) algorithm is utilized
to track the detected potholes in a sequence of successive
video frames. Extensive experimental results demonstrate the
robustness of our proposed road pothole detection and tracking
framework both qualitatively and quantitatively.

I. INTRODUCTION

A. Background

Potholes are deep depressions on the road surface caused by

erosion and wear [1]. They are typically detected and reported

by certified inspectors or structural engineers [2], [3]. This

process is, however, not only hazardous for the personnel but

also cumbersome and time-consuming [4]–[6]. Additionally,

the pothole detection results are always subjective because

they depend entirely on the experience of the individual

personnel [7], [8]. Therefore, there has been an ever-increasing

need for automated road pothole detection systems [9].

In recent years, laser scanning equipment has been exten-

sively used for 3-D road information acquisition [10], while

other technologies, e.g., passive sensing, are underutilized

[11], [12]. However, such laser scanners mounted on digital

Rigen Wu is with the School of Civil Engineering, Inner Mon-
golia University of Technology, Hohhot 010051, P. R. China (email:
wrg6370@outlook.com).

Jiahe Fan is with the School of Information and Electronics, Beijing
Institute of Technology, Beijing 100811, P. R. China (email: jhxfan@ieee.org).

Libo Guo is with Taiyuan IntelliVision Co. Ltd., Taiyuan 030006, China
(email: glbbobo@outlook.com).

Lei Qiao is with the State Key Laboratory of Ocean Engineering and the
School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao
Tong University, Shanghai, 200240, P. R. China (e-mail:qiaolei@sjtu.edu.cn).

M. Usman Maqbool Bhutta is with the Department of Mechanical and
Automation Engineering, the Chinese University of Hong Kong, Hong Kong
SAR, P. R. China (email: usmanmaqbool@outlook.com).

Brett Hosking is with Arm, Manchester M1 3HU, United Kingdom (email:
brett.hosking@arm.com).

Sergey Vityazev is with the Department of Telecommunications and Radio
Engineering Foundations, Ryazan State Radio Engineering University, Ryazan
390005, Russia (email: vityazev.s.v@ieee.org).

Rui Fan is with the Department of Control Science and Engineering, Tongji
University, Shanghai 201804, P. R. China (email: rui.fan@ieee.org).

Rigen Wu and Jiahe Fan contributed equally to this work.

inspection vehicles (DIVs) are costly and cannot be adapted

for other vehicles [13]. Recently, major advancements have

been achieved in the field of computer vision regarding dense

disparity image estimation [14]. A stereo vision system can

now reconstruct the 3-D geometry structure of road surfaces

with an accuracy of over 3 mm [15], [16]. Therefore, the trend

is to equip vehicles with portable, inexpensive, and durable

sensors, such as stereo cameras, for 3-D road data acquisition

and pothole detection [17].

B. State of the art in Road Pothole Detection

Existing road pothole detection approaches can either be

classified as 2-D image analysis-based or 3-D road surface

modeling-based [17]. The former typically apply traditional

image processing algorithms (e.g., morphological filtering,

thresholding, etc.) and/or machine/deep learning algorithms

(e.g., convolutional neural networks [18]–[26] for semantic

segmentation or object detection) to extract a region of interest

(RoI) from the given 2-D road image, such as an RGB image

or a depth/disparity image [27]–[35]. On the other hand, the

3-D road surface modeling-based approaches have become

popular in recent years [36], [37]. The work presented in [38]

is a typical example. It first reconstructs the 3-D road geometry

structure from stereo road images. A quadratic 3-D road

surface was then fitted to the reconstructed 3-D road surface.

By comparing the interpolated and original 3-D road surfaces,

the pothole regions can be detected. Recently, [17] presented

a hybrid road pothole detection algorithm that combines both

2-D image analysis and 3-D road surface modeling. It first

proposes a novel disparity image transformation algorithm,

which can better distinguish between damaged and undamaged

road areas. The transformed disparity image is then segmented

using Otsu’s thresholding algorithm [39]. The disparities in

the undamaged road areas are subsequently interpolated into

a quadratic road surface, where the road surface normals are

also incorporated into the surface interpolation process. The

road potholes are then detected by comparing the difference

between the interpolated and original disparity maps.

C. System Design

The aforementioned 3-D road surface modeling process is

very time-consuming. Therefore, in this paper, we first use

random sample consensus (RANSAC) to improve both the

robustness and efficiency of road surface modeling, where the

surface normal information is also incorporated to eliminate

outliers and it is acquired using three-filters-to-normal (3F2N),

an ultra-fast and highly accurate surface normal estimation
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Fig. 1. Block diagram of the proposed road pothole detection and tracking
system.

algorithm. Furthermore, the discriminative scale space tracking

(DSST) [40] algorithm is utilized to track the detected potholes

in a sequence of successive video frames. The block diagram

of the proposed system is depicted in Fig. 1. Extensive ex-

perimental results demonstrate the robustness of our proposed

road pothole detection and tracking system.

D. Paper Outline

The remainder of this paper is organized as follows: Section

II introduces our proposed scale-adaptive road pothole detec-

tion and tracking algorithm. Section III evaluates our proposed

road pothole detection and tracking system. Finally, Section

IV summarizes the paper and provides recommendations for

future work.

II. SYSTEM

A reconstructed 3-D road surface can be formulated as a

quadratic surface [17]:

f(X,Z) = a0 + a1X + a2Z + a3X
2 + a4Z

2 + a5XZ, (1)

where p = (X;Y ;Z) is a 3-D point on the road surface in the

camera coordinate system (CCS), as illustrated in Fig. 2. a =
(a0; a1; a2; a3; a4; a5) stores the quadratic surface coefficients.

a can be estimated by minimizing:

E =
n
∑

i=1

(

Yi − f(Xi, Zi)

)2

. (2)

The optimal a can be obtained when:

∂E

∂a0
=

∂E

∂a1
=

∂E

∂a2
=

∂E

∂a3
=

∂E

∂a4
=

∂E

∂a5
= 0. (3)

which results in:

Ma = q, (4)

where

M =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

n SX SZ SX2 SZ2 SXZ

SX SX2 SXZ SX3 SXZ2 SZX2

SZ SXZ SZ2 SZX2 SZ3 SXZ2

SX2 SX3 SZX2 SX4 SX2Z2 SZX3

SZ2 SXZ2 SZ3 SX2Z2 SZ4 SXZ3

SXZ SX2Z SXZ2 SX3Z SXZ3 SX2Z2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

(5)

and

q = (SY ;SXY ;SY Z ;SY X2 ;SY Z2 ;SXY Z). (6)

XXXCamera 
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Fig. 2. Camera coordinate system. A stereo camera is mounted on the vehicle
to capture road data.

S represents sum operation. For example, SXZ2 =
∑n

1
XiZi

2.

(5) and (6) can be rewritten as:

M = W⊤W , (7)

and

q = W⊤y, (8)

where

W =

⎡

⎢

⎣

1 X1 Z1 X1
2 Z1

2 X1Z1

...
...

...
...

...
...

1 Xn Zn Xn
2 Zn

2 XnZn

⎤

⎥

⎦
, (9)

and

y = (Y1;Y2; · · · ;Yn). (10)

Therefore, a has the following expression:

a =
(

W⊤W

)−1

W⊤y. (11)

Following [17], we employ the RANSAC algorithm to

iteratively update a with only a small proportion of 3-D

road points, which can greatly reduce the effects caused by

outliers. Moreover, [17] applies PlanePCA [41] to estimate the

normal vectors of the 3-D points. Such normal vectors are then

considered as part of the 3-D road surface modeling process to

eliminate outliers. However, PlanePCA [41] is incredibly time-

consuming, as it requires a selection of local points around

each point in 3-D space in order to estimate the normal vector

that is perpendicular to the interpolated planar surface. In this

paper, we apply 3F2N [42] to acquire the surface normal

information in real time. The surface normal ni = (nx;ny;nz)
of pi = (Xi;Yi;Zi) is formulated as [42]:

nx = fx
∂1/Zi

∂u
, (12)

ny = fy
∂1/Zi

∂v
. (13)

nz = −Φ

{

∆Xijnx +∆Yijny

∆Zij

}

, j = 1, . . . , k, (14)

where fx and fy are the horizontal and vertical focal lengths; Φ
is a median filtering operation; ∆Xij = Xi−Xj , ∆Yij = Yi−
Yj , and ∆Zij = Zi−Zj can be computed given a neighboring
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Fig. 3. Examples of the road pothole detection results: (a) RGB images; (b) disparity images; (c) transformed disparity images; (d) pothole detection results
in pixel and instance levels.

point qj = (Xj ;Yj ;Zj) of pi. The optimal surface normal

vector of a given 3-D point pi = (Xi;Yi;Zi) can be estimated

using:

n̂ = (a1 + 2a3Xi + a5Zi;−1; a2 + 2a4Zi + a5Xi). (15)

By computing the difference (angle) between n̂ and ni:

θi = arccos

(

n̂i · ni

||n̂i||2||ni||2

)

, (16)

the outliers can be determined, and they will not be considered

into 3-D road surface modeling. Subsequently, we compare

the difference between the actual and interpolated 3-D road

surfaces. If f(Xi, Zi) − Yi > tr, where tr is the pothole

detection threshold, pi = (Xi;Yi;Zi) will be considered to

be a 3-D point in the pothole areas. We also apply image

post-processing algorithms, such as morphological operations,

to refine the estimated pothole areas. Finally, different potholes

are labeled using the connected component labeling algorithm.

Additionally, we employ DSST [40] to track the detected

potholes in a sequence of successive video frames. Compared

to some other state-of-the-art trackers such as High-speed

tracking with kernelized correlation filters (KCF) [43], circu-

lant structure of tracking (CSK) [44] and scale adaptive with

multiple features tracker (SAMF) [45], the DSST performs

better in terms of estimating the translation and size of the

target in scenarios with scale variation [40]. Before tracking

the detected potholes, we first utilize the disparity image

processing algorithm proposed in [9] to transform our disparity

image into a quasi bird’s eye view:

ℓ′(x) = ℓ(x)− κ(v cosφ− u sinφ)− κκ + δ, (17)

where x = (u; v) is an image pixel, ℓ is the original disparity

image, ℓ′ is the transformed disparity image, φ is the stereo

rig roll angle [46], κ and κ are two coefficients of the road

disparity projection model [47], and δ is a constant set to

ensure that the transformed disparities are non-negative. The

expressions of κ and κ are as follows:

κ =
1

c

(

m

m
∑

i=1

ℓ(xi)w(xi, φ)−

m
∑

i=1

ℓ(xi)

m
∑

i=1

w(xi, φ)

)

,

(18)

κ =
1

κc

(

m
∑

i=1

ℓ(xi)

m
∑

i=1

w(xi, φ)
2

−

m
∑

i=1

w(xi, φ)

m
∑

i=1

ℓ(xi)w(xi, φ)

)

,

(19)

where

w(x, φ) = v cosφ− u sinφ, (20)

c = m

m
∑

i=1

w(xi, φ)
2
−
(

m
∑

i=1

w(xi, φ)
)2

. (21)

The disparity transformation makes the road potholes highly

distinguishable, improving the performance of road pothole

tracking. Subsequently, we perform DSST [40] on our trans-

formed disparity images to track the detected potholes. The

performance of our proposed road pothole detection and

tracking system will be evaluated in the next section.

III. EXPERIMENTAL RESULTS

In this section, the performance of our proposed road pot-

hole detection and tracking system is evaluated. This system

is implemented in Matlab 2021b platform. The following sub-

sections provide details on our used datasets and performance

evaluation.
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Fig. 4. Pothole tracking results. The (same) potholes in different video frames are tracked with scale-adaptive bounding boxes.

A. Datasets

In our experiments, we first utilize the road pothole detec-

tion datasets1 provided in [17] to evaluate the performance of

our proposed road pothole detection system. Furthermore, we

utilize the Bristol road pothole detection dataset, which con-

tains two sequences of ∼2K successive stereo video frames,

provided in [38] and [48] to evaluate the performance of road

pothole tracking.

B. Performance Evaluation

Some examples of the detected road potholes in both pixel

and instance levels are shown in Fig. 3. It can be seen

that the road potholes can be successfully detected using

our proposed 3-D road surface modeling algorithm, where

different bounding box colors refer to different road potholes.

Compared to [17], the 3-D road surface modeling process is

approximately 2.7 times faster (on an Intel Core i7-8700K

CPU using a single thread). The successful road pothole

detection accuracy is over 98.7% as shown in Table I.

In addition, we also qualitatively evaluate the performance

of DSST [40] for road pothole tracking on the transformed

disparity images, as shown in Fig. 4. Readers can observe that

DSST [40] performs robustly in terms of scale-adaptive road

pothole tracking. Distant road potholes are localized by smaller

bounding boxes, while nearby road potholes are localized by

larger bounding boxes. Moreover, when part of road pothole

is occluded by the vehicle, DSST [40] can still localize the

road pothole robustly. Therefore, we believe DSST [40] is an

effective tool that can be utilized for road pothole detection.

IV. CONCLUSION AND FUTURE WORK

In this paper we describe a robust 3-D road surface model-

ing algorithm based on our previously published work for road

pothole detection, where the optimal surface normal vector of

each 3-D point is efficiently estimated from the quadratic road

1https://github.com/ruirangerfan/stereo pothole datasets

TABLE I
COMPARISON OF POTHOLE DETECTION ACCURACY.

Dataset Method
Correct

Detection
Incorrect
Detection

Misdetection

Dataset 1
[48] 11 11 0

proposed 22 0 0

Dataset 2
[48] 42 10 0

proposed 51 1 0

Dataset 3
[48] 5 0 0

proposed 5 0 0

Total
[48] 58 21 0

proposed 78 1 0

surface modeling function. This greatly reduces the intensive

computational complexity of the approach detailed in our pre-

vious work, where the normal vector of 3-D point is estimated

by fitting a local planar surface using PlanePCA. Subsequently,

the surface normal information was used to eliminate outliers

for 3-D road surface modeling. By comparing the actual and

modeled 3-D road surfaces, the 3-D pothole point clouds

can be extracted. Finally, discriminative scale space tracking

was applied to track the detected potholes in a sequence

of successive video frames capturing transformed disparity

information. Extensive experimental results demonstrated the

robustness of our proposed road pothole detection and tracking

system, where the achieved accuracy is around 99%, and the

road potholes can be accurately tracked in different video

frames with adaptive bounding box scales.

In the future, we plan to apply unsupervised learning with

deep convolutional neural networks to detect/localize road

potholes directly from either RGB or transformed disparity

images. Furthermore, we also plan to develop a multi-target

multi-camera tracking algorithm to track multiple potholes

between stereo camera.

REFERENCES

[1] J. S. Miller et al., “Distress identification manual for the long-term
pavement performance program,” United States. Federal Highway Ad-

Authorized licensed use limited to: University of Florida. Downloaded on January 11,2024 at 19:36:09 UTC from IEEE Xplore.  Restrictions apply. 



ministration., Tech. Rep., 2003.

[2] J. Fan et al., “Multi-scale feature fusion: Learning better semantic seg-
mentation for road pothole detection,” in The 2021 IEEE International

Conference on Autonomous Systems (ICAS). IEEE, 2021.

[3] C. Koch et al., “A review on computer vision based defect detection
and condition assessment of concrete and asphalt civil infrastructure,”
Advanced Engineering Informatics, vol. 29, no. 2, pp. 196–210, 2015.

[4] R. Fan et al., “Real-time dense stereo embedded in a uav for road
inspection,” in 2019 IEEE/CVF Conference on Computer Vision and

Pattern Recognition Workshops. IEEE, 2019, pp. 535–543.

[5] C. Koch et al., “Automated pothole distress assessment using asphalt
pavement video data,” Journal of Computing in Civil Engineering,
vol. 27, no. 4, pp. 370–378, 2013.

[6] R. Fan et al., “Road crack detection using deep convolutional neural
network and adaptive thresholding,” in 2019 IEEE Intelligent Vehicles

Symposium (IV). IEEE, 2019, pp. 474–479.

[7] J. Fan et al., “Deep convolutional neural networks for road crack
detection: Qualitative and quantitative comparisons,” in 2021 IEEE

International Conference on Imaging Systems and Techniques (IST).
IEEE, 2021.

[8] P. Wang et al., “Asphalt pavement pothole detection and segmentation
based on wavelet energy field,” Mathematical Problems in Engineering,
vol. 2017, 2017.

[9] R. Fan et al., “We learn better road pothole detection: from attention
aggregation to adversarial domain adaptation,” in European Conference

on Computer Vision. Springer, 2020, pp. 285–300.

[10] X. Yu and E. Salari, “Pavement pothole detection and severity measure-
ment using laser imaging,” in 2011 IEEE International Conference on

Electro/Information Technology. IEEE, 2011, pp. 1–5.

[11] S. Mathavan, K. Kamal, and M. Rahman, “A review of three-
dimensional imaging technologies for pavement distress detection and
measurements,” IEEE Transactions on Intelligent Transportation Sys-

tems, vol. 16, no. 5, pp. 2353–2362, 2015.

[12] R. Fan et al., “Long-awaited next-generation road damage detection
and localization system is finally here,” in 2021 29th European Signal

Processing Conference (EUSIPCO). IEEE, 2021, pp. 1–5.

[13] T. Kim and S.-K. Ryu, “Review and analysis of pothole detection
methods,” Journal of Emerging Trends in Computing and Information

Sciences, vol. 5, no. 8, pp. 603–608, 2014.

[14] R. Fan et al., “Real-time stereo vision for road surface 3-d reconstruc-
tion,” in 2018 IEEE International Conference on Imaging Systems and

Techniques (IST). IEEE, 2018, pp. 1–6.

[15] R. Fan, X. Ai, and N. Dahnoun, “Road surface 3d reconstruction based
on dense subpixel disparity map estimation,” IEEE Transactions on

Image Processing, vol. 27, no. 6, pp. 3025–3035, 2018.

[16] R. Fan et al., “Rethinking road surface 3-d reconstruction and pothole
detection: From perspective transformation to disparity map segmenta-
tion,” IEEE Transactions on Cybernetics, 2021.

[17] R. Fan, U. Ozgunalp, B. Hosking, M. Liu, and I. Pitas, “Pothole
detection based on disparity transformation and road surface modeling,”
IEEE Transactions on Image Processing, vol. 29, pp. 897–908, 2019.

[18] R. Fan et al., “Learning collision-free space detection from stereo im-
ages: Homography matrix brings better data augmentation,” IEEE/ASME

Transactions on Mechatronics, 2021.

[19] D. K. Dewangan and S. P. Sahu, “Potnet: Pothole detection for au-
tonomous vehicle system using convolutional neural network,” Electron-

ics Letters, vol. 57, no. 2, pp. 53–56, 2021.

[20] W. Ye et al., “Convolutional neural network for pothole detection in
asphalt pavement,” Road materials and pavement design, vol. 22, no. 1,
pp. 42–58, 2021.

[21] H. Wang et al., “Applying surface normal information in drivable
area and road anomaly detection for ground mobile robots,” in 2020

IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS). IEEE, 2020, pp. 2706–2711.

[22] K. Bansal, K. Mittal, G. Ahuja, A. Singh, and S. S. Gill, “Deepbus:
Machine learning based real time pothole detection system for smart
transportation using iot,” Internet Technology Letters, vol. 3, no. 3, p.
e156, 2020.

[23] A. Kulkarni, N. Mhalgi, S. Gurnani, and N. Giri, “Pothole detection
system using machine learning on android,” International Journal of

Emerging Technology and Advanced Engineering, vol. 4, no. 7, pp. 360–
364, 2014.

[24] R. Fan, H. Wang, P. Cai, and M. Liu, “Sne-roadseg: Incorporating
surface normal information into semantic segmentation for accurate

freespace detection,” in European Conference on Computer Vision.
Springer, 2020, pp. 340–356.

[25] A. Kumar, D. J. Kalita, V. P. Singh et al., “A modern pothole detection
technique using deep learning,” in 2nd International Conference on

Data, Engineering and Applications (IDEA). IEEE, 2020, pp. 1–5.
[26] P. Ping et al., “A deep learning approach for street pothole detection,”

in 2020 IEEE Sixth International Conference on Big Data Computing

Service and Applications (BigDataService). IEEE, 2020, pp. 198–204.
[27] S. Li, C. Yuan, D. Liu, and H. Cai, “Integrated processing of image and

gpr data for automated pothole detection,” Journal of computing in civil

engineering, vol. 30, no. 6, p. 04016015, 2016.
[28] R. Fan, M. J. Bocus, and N. Dahnoun, “A novel disparity transformation

algorithm for road segmentation,” Information Processing Letters, vol.
140, pp. 18–24, 2018.

[29] Y.-C. Tsai and A. Chatterjee, “Pothole detection and classification using
3d technology and watershed method,” Journal of Computing in Civil

Engineering, vol. 32, no. 2, p. 04017078, 2018.
[30] R. Fan and M. Liu, “Road damage detection based on unsupervised

disparity map segmentation,” IEEE Transactions on Intelligent Trans-

portation Systems, 2019.
[31] C. Koch and I. Brilakis, “Pothole detection in asphalt pavement images,”

Advanced Engineering Informatics, vol. 25, no. 3, pp. 507–515, 2011.
[32] S.-K. Ryu, T. Kim, and Y.-R. Kim, “Image-based pothole detection

system for its service and road management system,” Mathematical

Problems in Engineering, vol. 2015, 2015.
[33] R. Fan, “Real-time computer stereo vision for automotive applications,”

Ph.D. dissertation, University of Bristol, 2018.
[34] E. Buza, S. Omanovic, and A. Huseinovic, “Pothole detection with

image processing and spectral clustering,” in Proceedings of the 2nd

International Conference on Information Technology and Computer

Networks, vol. 810, 2013, p. 4853.
[35] M. R. Jahanshahi et al., “Unsupervised approach for autonomous

pavement-defect detection and quantification using an inexpensive depth
sensor,” Journal of Computing in Civil Engineering, vol. 27, no. 6, pp.
743–754, 2013.

[36] G. Jog et al., “Pothole properties measurement through visual 2d
recognition and 3d reconstruction,” in Computing in Civil Engineering

(2012), 2012, pp. 553–560.
[37] J. W. Perng, C. H. Tai, C. H. Kuo, and L. S. Ma, “3d environment map-

ping and pothole detection for a mobile robot,” in Applied Mechanics

and Materials, vol. 431. Trans Tech Publ, 2013, pp. 287–292.
[38] U. Ozgunalp, “Vision based lane detection for intelligent vehicles,”

Ph.D. dissertation, University of Bristol, 2016.
[39] N. Otsu, “A threshold selection method from gray-level histograms,”

IEEE transactions on systems, man, and cybernetics, vol. 9, no. 1, pp.
62–66, 1979.
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