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a b s t r a c t

Collision-free navigation of mobile robots is a challenging task, especially in unknown environments, and

various studies have been carried out in this regard. However, the previous studies have shortcomings,

such as low performance in cluttered and unknown environments, high computational costs, and multi-

ple controller models for navigation. This paper proposes an adaptive neuro-fuzzy inference system

(ANFIS) and global positioning system (GPS) for control and navigation to overcome these problems.

The proposed method automates the navigation of a mobile robot while averting obstacles in unknown

and densely cluttered environments. Furthermore, the mobile robots’ global path planning and steering

are controlled using GPS and heading sensor data fusion to achieve the target coordinates. A fuzzy infer-

ence system (FIS) is adopted to model obstacle avoidance where distance sensors data is converted into

fuzzy linguistics. Moreover, a type-1 Takagi–Sugeno FIS is used to train a five-layered neural network for

the local planning of the robot, and ANFIS parameters are tuned using a hybrid learning method. In addi-

tion, an algorithm is designed to generate a dataset for testing and training the ANFIS controller. All the

testing and training are conducted in MATLAB, while simulations are carried out using CoppeliaSim.

Comprehensive experiments are performed to validate the robustness of the proposed method. The

results of the experiments show that the proposed approach outperforms various state-of-the-art

neuro-fuzzy, CS-ANFIS, multi-ANFIS, and hybrid ANFIS navigation and obstacle avoidance methods in

finding a near-optimal path in unknown environments.

� 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Autonomous navigation of a mobile robot is the ability to sense

the environment, tackle obstacles, plan a trajectory from starting

point to destination, and efficiently control the heading towards

the target to achieve real-time navigation autonomously.

Collision-free and autonomous navigation of mobile robots is a

critical problem in various fields such as artificial intelligence

(AI) and robotics (Thor and Manoonpong, 2022; Li et al., 2022;

Xiao et al., 2022; Wu et al., 2021; Shahidinejad et al., 2020; Ma

et al., 2018). Real-time navigation is relatively easy for humans

and animals while avoiding all the obstacles in a dynamic environ-

ment. Though, it is still a monumental challenge for mobile robots.

Numerous efforts have been devoted to achieving biomimetic-like

behaviors in mobile robot navigation and obstacle avoidance. Pre-

viously, the main focus of building mobile robots was to navigate

known environments such as warehouses, factory floors, indoor

environments, etc. Such environments are comparatively more

predictable and less challenging as compared to unknown and

uncharted environments such as military operations, aerospace

research, nuclear research, landmine detection, agriculture, rescue

operations, medical aid during the COVID-19 pandemic, and others

(Klancar et al., 2017; Baudoin and Habib, 2010; Troccaz, 2013;

Cardona et al., 2020; Holland, 2004).
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Fuzzy logic is well suited for the motion control of a robot as it

is a protagonist to make inferences despite the existence of uncer-

tainty in data (Naghsh et al., 2014; Ariffin et al., 2011). An intelli-

gent fuzzy and feedback linearization controller effectively

acquires the autonomous path planning of the mobile robot

(Mondal et al., 2022). However, this method assumes that all

obstacles have the same shape and size. The robot only follows a

pre-defined trajectory, knowing the static obstacle positions.

Another assumption is that virtual sensors precisely measure the

obstacle’s center, which is not practical in most cases. An intelli-

gent autonomous parking system (Nakrani and Joshi, 2022) for a

car-like mobile robot that efficiently parks the vehicle in dynamic

environmental conditions is designed using two fuzzy controllers;

one to handle the parking task and another to avoid obstacles

while parking. But, the proposed obstacle avoidance controller

needs an expert to define 81 different rules to avoid all possible sit-

uations. Additionally, a switch block is designed to switch between

the modes. The adaptive fuzzy logic controller (Bakdi et al., 2017)

for navigational control with two kinetic sensors and GA has the

ability to find the target. Still, the map needs to be modeled offline

before the GA path planning, the data fusion is not easy, and map-

ping the environment requires high memory and computational

cost. Fuzzy membership and IR sensors-based obstacle avoidance

(Aouf et al., 2019) can avoid obstacles with a safe margin, although

this method demands partial or complete environmental informa-

tion. A multi-layer decision-based fuzzy logic model (Kamil and

Moghrabiah, 2021) performs well in comparatively simple and sta-

tic environments for the autonomous navigation of mobile robots.

The disadvantage of this method is the extremely high computa-

tional time in a cluttered and dynamic environment. Fuzzy neural

network (Lv et al., 2021) for the unmanned ground vehicle based

on multi-sensor information fusion smoothly avert obstacles com-

ing in its way. However, it requires additional optimization of the

neural network parameters to improve the design performance.

Adaptive neuro-fuzzy inference system (ANFIS) is the amalga-

mation of neural networks and fuzzy inference systems (FIS).

ANFIS provides the opportunity for accurate knowledge represen-

tation with learning ability (Santoso et al., 2016). In reference

(Elbatal et al., 2020), the authors proposed an autopilot using GA

and ANFIS to increase the durability and robustness of unmanned

air vehicles (UAV) under windy conditions. Still, multiple con-

trollers are needed to tune each parameter, and authors must

define 64 rules to satisfy the desired goal. The authors (Vu et al.,

2018) applied ANFIS for the path planning of a robotic excavator

arm to follow the desired trajectory under optimized shape condi-

tions. Although, the path trajectory needs to be designed in the first

place, and then ANFIS training can be carried out. In paper (Farahat

et al., 2019), authors used a single ANFIS for mobile robot naviga-

tion with machine vision for global path planning and obstacle

avoidance. Yet, all the input parameters have seven membership

functions, leading to 2401 rules, making it computationally com-

plex. A single ANFIS controller (Haider et al., 2022) for the autono-

mous path planning of the mobile robot shows success in the

obstacle avoidance task by just using 16 rules; nonetheless, the

global path is supplied to navigate in the environment. In reference

(Karthikeyan et al., 2019), authors successfully presented an

ANFIS-based model for distance calculation between the obstacles

and robot with 104 rules and parameters tuning is attained by the

backpropagation algorithm, which converges slower than hybrid

propagation. These methods utilize multiple ANFIS-based con-

trollers for each output parameter, which poses a hindrance to

the training process. Moreover, these methods do not handle

obstacle avoidance behavior, as a cluttered environment is chal-

lenging and computationally complex to map.

As discussed earlier, fuzzy logic has flaws when used alone for

mobile robot navigation as it is incapable of learning. Even though

several hybrid neuro-fuzzy and ANFIS techniques have been pro-

posed, it is still challenging to perform autonomous mobile robot

navigation utilizing only one controller and without expert-

defined rules. It is a monumental task to move a robot autono-

mously from one point to another in a cluttered environment just

using a few rules and a single ANFIS controller for local path plan-

ning without having information about obstacles’ orientation and

position. The methods described above are subject to numerous

challenges, such as the requirement of partial or complete informa-

tion about the environment and obstacles, adaptability to new

environments, offline training for new environments, high compu-

tational demands for cluttered environments, data fusion prob-

lems, a large number of rules for simple tasks, and multiple

controllers for obstacle avoidance and others. It motivates us to

propose a robust hybrid method based on ANFIS and sensor fusion

to overcome these issues for the local path planning of the mobile

robot in this study. Global path planning is executed using GPS and

heading sensor fusion to guide the robot towards the target when

there is no obstacle in close proximity. The main contributions of

this research work can be summarized as follows:

� This paper proposes a robust navigation approach. The pro-

posed approach is more adaptable to unknown obstacle-prone

clutter environments than previous methods. Moreover, path

planning and obstacle avoidance are handled in a linguistic

manner that is easily understandable by humans.

� Unlike the previous methods, a single ANFIS controller is pro-

posed for local path planning with 27 rules contrary to multiple

ANFIS and hundreds of rules. Additionally, the proposed

method tackles all obstacles with a safe margin and reaches

the target with a shorter path.

� Comprehensive experiments are performed, as well as several

comparisons with state-of-the-art methods. The results indicate

the superiority of the proposed approach.

The rest of the paper is organized as follows: Section 2 elaborates

the proposed method and the preliminary knowledge. Moreover,

Section 3 presents the details about the experiments and discus-

sion on results followed by a conclusion in Section 4. Finally, Sec-

tion 5 states the future work.

2. Proposed robust navigation controller

A general three-wheeled robot model having two front wheels

and a passive omni wheel at the back is used for this research

work. A GPS module is placed in the center of the robot while three

sensors are placed around the right, front and left sides of the

robot, respectively. GPS feeds the global navigation controller in

every time interval dgps. Similarly, ultrasonic sensors feed the ANFIS

module in every time interval ds, where ds is always smaller or

equal to dgps. Fig. 1 represents the flow chart of the proposed algo-

rithm for autonomous mobile robot navigation. .

2.1. Local navigation control

At first, the robot has to check if there are any obstacles less

than the threshold or not, and then it decides the motion direction

(as shown in Fig. 1). The robot receives near, mid, and far as obsta-

cle distance information from the sensors during local path plan-

ning. It should be noticed that the sensors’ information is

imprecise and uncertain in nature. Additionally, conventional log-

ical systems are not able to represent linguistic variables. Mathe-

matical modeling of such variable variables is also challenging,

but they are very commonly used in our daily life, and these are

quite easy to use. Generally, human beings do not require precise
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mathematical or logical numbers, yet their ability to control highly

complex systems is remarkable. This is just because there is a

concept of fuzzy logic in human perception.

The fuzzy logic system uses linguistic variables to model and

deal with imperfect and imprecise data and represent it in a better

and more logical way. Fuzzy logic gives a platform to represent

uncertain and ambiguous data. Moreover, Fuzzy logic resembles

the human linguistics rules to represent imprecise and inaccurate

data. However, fuzzy logic lacks self-tuning and self-organizing.

This creates the problem of the selection of membership function

parameters. Self-tuning and self-learning require knowledge of

the relationship between the input–output data. Experts formulate

the rules and find the input–output relationship with the respond-

ing data.

On the other hand, neural networks are excellent performers for

learning tasks. They can approximate a function without knowing

the input–output relationship. Neural networks are used to

develop many engineering systems. Neural networks are not good

with modeling and logical reasoning of imprecise knowledge or

data. ANFIS is the coproduct of fuzzy inference systems and neural

networks. This allows for a favorable combination of circumstances

to train the neural network using fuzzy logic. Hence, considering

these attributes, ANFIS is chosen to perform the local path planning

of the wheeled mobile robot. For local navigation, three ultrasonic

sensors are mounted on the sides of the robot to measure the dis-

tance from obstacles on each side. Sensors are mounted on the

right, middle, and left parts of the robot, covering the semicircular

front to protect it from a collision. The sensors data is divided into

three groups, right sensor data, left sensor data, and the front sen-

sor data. The desired goal is to reach the destination without colli-

sion, with any obstacles coming in its way in unknown

environments. The robot motion is divided into obstacle avoidance

and goal-seeking motion planning. During the goal-seeking motion

planning, the heading towards the destination is found using a

goal-seeking algorithm, i.e., the global path planning and steering

are adjusted accordingly. Otherwise, whenever an obstacle is

within the close perimeter of the robot, then ANFIS takes over

the steering control. Here, the threshold value for any distance sen-

sor is adjusted to 20 cm.

2.2. Adaptive neuro-fuzzy inference system

This section is divided into three parts: (i) Fuzzy inference sys-

tem, (ii) General schema of the ANFIS, and (iii) Hybrid training

algorithm.

2.2.1. Fuzzy inference system

FIS is the critical component of ANFIS. The primary work of FIS

is to make decisions using fuzzy logic data and rules. FIS decision

rules use ’If-Then’ statements along with ’AND-OR’ connectors.

FIS is composed of five functional blocks, namely, fuzzification,

database, ruling, decision making, and defuzzification. A

linguistic-based crisp input is converted into fuzzy variables, and

FIS returns the crisp output after processing. There are two popular

FIS methods for control applications, Mamdani FIS and Takagi–

Sugeno FIS. Takagi–Sugeno FIS advances in terms of adjustable

parameters more than Mamdani FIS. The ability to model exceed-

ingly complicated systems and embed linear controllers is the

beauty of Takagi–Sugeno FIS. The FIS for this study is constructed

using the first order Takagi–Sugeno model as mentioned in multi-

ple studies (Sugeno and Kang, 1988; Takagi and Sugeno, 1985).

FIS inputs are represented using linguistic terms, i.e., ’near’,

’mid’, ’far’, and the universe of discourse is defined as 0, 20, 40,

60, 80, and 100 cm. The center values of corresponding linguistic

terms ’near’, ’mid’, and ’far’ are 12, 45, and 100 cm, respectively.

As shown in Fig. 2, the bell-shaped membership functions are used

to determine the degree of belongingness of fuzzy sets to their

associated linguistic terms. FIS output is one of the a crisp value

from �90, �45, 0, 45, 90, 180 deg. The If-then rules are used to

select the right output in the ANFIS controller.

The proposed ANFIS architecture has five layers, three inputs,

and a single output. Each input is subdivided into three member-

ship functions, then 27 if-then rules are needed, as shown in

Fig. 3. The details for the layers are provided as follows:

Input layer: The input layer is also known as the zero layer. This

node receives the measured values from the distance sensors and

then identifies the obstacles’ locations and passes them to the first

layer. Superscripts and subscripts represent the layer and sensor

number, respectively.

L01 ¼ Output of left sensor ðcmÞ ð1Þ

F02 ¼ Output of front sensor ðcmÞ ð2Þ

R0
3 ¼ Output of right sensor ðcmÞ ð3Þ

Fuzzification layer: This layer receives the raw sensor inputs

and converts them to fuzzy values. This is the first step of a FIS.

The membership values of each node are determined by utilizing

the membership belongingness of its relevant fuzzy set. The accu-

racy of the FIS depends on the number of membership functions,

the higher number of membership functions results in higher accu-

racy, but it also increases the system’s complexity. A complex sys-

tem requires more memory and computational time. A trade-off

can be found by keeping the desired objective in view. Gaussian-

bell (g-bell) function membership is straightforward and popular

to find the membership values (l) in the fuzzification process.

The g-bell function has been used to find the membership values.

Every node in this layer is an adaptive node as given in Fig. 2.

Fig. 1. A graphical abstract for the autonomous mobile robot navigation. The mobile robot performs the data acquisition task in the first step by collecting sensors data. An

application programming interface (API) is established between CoppeliaSim and MATLAB to read the sensor measurements and govern the steering angle to successfully

navigate the mobile robot while avoiding obstacles from a starting point to a target.
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O1
j ¼ lLj L01

� �

¼
1

1þ
L01�aj
cj

� �2bj
for j ¼ 1; 2; 3 ð4Þ

O1
j ¼ lFj�3 F02

� �

¼
1

1þ
F02�aj
cj

� �2bj
for j ¼ 4; 5; 6 ð5Þ

O1
j ¼ lRj�6 R0

3

� �

¼
1

1þ
R0
3�aj
cj

� �2bj
for j ¼ 7; 8; 9 ð6Þ

Premise parameters define the membership functions’ shape and

area. Here, antecedent parameters are donated by aj; bj; and cj
for each neuron of the first layer, respectively. Based on the Tak-

agi–Sugeno model for the ANFIS, the rules can be formulated as:

Rules j ðj 2 f1;2;3; . . . ;27gÞ If left sensor data is Lj, front sensor

data is Fj, and right sensor data is Rj then dj ¼ pjL
0
1 þqjF

0
2 þ rjR

0
3 þ sj

Where, L01; F02; R0
3 are the fuzzy inputs, and dj is the crisp output,

L01 ¼ Lnear; Lmid; Lfarf g; F02 ¼ Fnear; Fmid; Ffarf g;R0
3 ¼ Rnear; Rmid; Rfarf g are

the fuzzy sets, and pj; qj; rj; sj, are the linear consequence param-

eters of the FIS.

Ruling layer: Each node in the second layer represents a

defined If-Then rule under the Takagi–Sugeno model. These rules

are the key for each node to evaluate the firing strength of the

antecedents received from the previous layer. The output of each

node generates the firing strength of the given set of fuzzy rules,

which corresponds to a specific part of the rule applied. It is also

important to note that the structure and area of the output func-

tion depend on the firing strength of every rule. Accordingly, the

ruling layer outputs are the ’AND’ product of the subsequent layer

as provided in Eq. 7.

O2
j ¼ wj ¼ lLa L01

� �

lFb F02

� �

lRc R0
3

� �

ð7Þ

for j 2 f1;2;3; . . . ;27g and a; b; c 2 f1;2;3g. Every node in this layer

is a fixed node.

Normalization layer: Each node is normalized according to the

ratio of j
th
rule strength and the sum of all the provided rules.

O3
j ¼ �wj ¼

wj
P

wj

ð8Þ

All the nodes in this layer are fixed nodes. Each node in this layer

receives the inputs from all the nodes of the ruling layer. The output

of this layer is the weight ratio of the j
thnode and the weight of all

other nodes in this layer, as stated in Eq. 8.

Evaluation layer: In this layer, a relationship is established

between input and output as stated in Eq. 9.

O4
j ¼ �wjdj ¼ �wj pjL

0
1 þ qjF

0
2 þ rjR

0
3 þ sj

� �

ð9Þ

The weighted average of the rules from the previous layer is

multiplied with the equation having the consequent parameters.

Fig. 2. Figures from (a)-(c) represent sonar sensor data before training. Obstacle distance readings are fuzzified into near, mid, and far linguistic variables for all the sensors.

All the distance values are in cm, and l stands for the membership value of each membership function of the corresponding set.

Fig. 3. The input data from the left, front and right obstacle detecting sensors are represented by L01; F0
2 , and R0

3 in the input layer; here, subscripts state sensor number and

superscript state layer number. The final steering output is shown as d, while pj; qj; rj , and sj represent consequent parameters.Moreover, all the adaptive nodes are drawn in

rectangular shape whereas all the fixed nodes are drawn in circles.
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Consequent parameters are vital in this layer as they govern the

output. Additionally, all the nodes in this layer are adaptive in

nature.

Defuzzification layer: Defuzzification is the final layer of the

ANFIS. This layer sums up all previous layer outcomes to generate

the final desired steering angle as given in Eq. 10.

O5
j ¼ �wjdj ¼

P

wjdj
P

wj

ð10Þ

This node corresponds to the adaptive behavior.

2.2.2. Hybrid training algorithm

ANFIS uses a hybrid algorithm to tune and update the premise

and consequence parameters. Two methods used in conjunction

are the gradient descent method and the least mean square

method. The gradient descent method is applied to update premise

parameters. Consequent parameters are tuned using the least

square method. The consequent parameters are chosen by the least

square method during each forward pass epoch. First, the conse-

quent parameters are fixed using the backward error propagation

method, and premise parameters are updated according to the gra-

dient descent approach.

Algorithm1: Dataset generation.

DistanceSamples = 10000

ThresoldDistance = 20

A[DistanceSamples, 4] =0

TD = ThresoldDistance

j = 1

whilej 6DistanceSamplesdo

A[j,1]= rand[100] %Left sensor data

A[j,2]= rand[100] %Front sensor data

A[j,3]= rand[100] %Right sensor data

if(A[j,1] 6 TD) & (A[j,2] 6 TD) & (A[j,3] 6 TD)do

A[j,4]=180

elsif(A[j,1] 6 TD) & (A[j,2] P TD) & A[j,3] 6 TDthen

A[j,4]=0

elsif(A[j,1] 6 TD) & (A[j,2] P TD) & A[j,3] P TDthen

A[j,4]=45

elsif(A[j,1] 6 TD) & (A[j,2] P TD) & A[j,3] P TDthen

A[j,4]=90

elsif(A[j,1] P TD) & (A[j,2] P TD) & A[j,3] 6 TDthen

A[j,4]=-45 %Anti Clockwise

elsif(A[j,1] P TD) & (A[j,2] 6 TD) & A[j,2] P TDthen

A[j,4]=90

elsif(A[j,1] P TD) & (A[j,2] 6 TD) & A[j,3] 6 TDthen

A[j,4]=-90 %Anti Clockwise

end if

j = j + 1

end while

2.3. Goal seeking planning

The robot gets its instantaneous position from the attached GPS

module. Now, the robot direction is obtained using the two vector

system and heading sensor. The working mechanism of the goal-

seeking behavior is presented in Fig. 1. Moreover, Fig. 4 presents

the geometrical features of the robot, GPS, and the heading sensor

for global path planning. Assume x1 and y1 are the robot coordi-

nates and x2; y2 are the destination coordinates. The values of x

and y can be obtained using the subtraction of final coordinates

and robot coordinates according to the following Eq. 11, Eq. 12,

and Eq. 13.

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

ð11Þ

S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � x1ð Þ2 þ y2 � y1ð Þ2
q

ð12Þ

h ¼ tan�1 y2 � y1ð Þ= x2 � x1ð Þ½ � ð13Þ

Moreover, a heading sensor needs to find the direction of the cur-

rent direction of the robot. The target angle (/) can be adjusted

using the two points vector angle calculation. Finally, if the robot

satisfies S < Sth condition, it indicates the target position has been

reached.

Fig. 4 shows the current location of the robot and the destination

in the Cartesian coordinate system. The red line represents the

desired path, while the yellow line represents the current heading

path of the robot. Moreover, h represents the angle in degrees the

robot should deflect from the origin, and / represents the angle

between the current headed trajectory and the desired path.

2.4. Dataset generation

In order to train the proposed model, a dataset is generated that

considers the sensor inputs and output steering angles. The dataset

is comprised of 10,000 samples based on the sensor readings. In

Algorithm1, generated the dataset based on N data distances. All

other operations such as conditional checks have a constant com-

plexity of Oð1Þ. The main complexity depends on the number of

distance samples DistanceSamples. Therefore the overall worst-

case time complexity for Algorithm 1 is OðDistanceSamplesÞ and

the average runtime of Algorithm1 is 0.0153752s.

We shed some light on the phenomena related to steering con-

trol. Seven cases drive the wheeled mobile robot’s steering, as pre-

sented in Fig. 5, i.e., for the first two cases, there is an obstacle on

either the right or the left side of the robot, and as a remedy, the

robot selects a turning angle of �45� towards left or right, away

from the obstacle. Similarly, for the third and fourth cases shown

in Fig. 5, a turning angle of �90� is selected for a front-facing obsta-

cle in addition to the side-facing obstacle. Moreover, the fifth case

represents a corridor scenario, i.e., having obstructions on both

sides, selecting a steering angle of 0�. In the sixth case, a steering

angle of 180� is selected in order to avoid the front and side facing

obstructions. A steering angle of 90� is selected to avoid the front-

facing obstruction. Further details about the steering angles and

the orientation of the obstacles are provided in Table 2 where

the negative sign represents the anti-clockwise steering. Given

Fig. 4. Geometric representation of the destination, GPS, and the heading sensor

with reference to the robot. Here, S represents the distance between the robot’s

current location and the destination, whereas x1; y1 and x2; y2 represents their

corresponding coordinates, respectively.
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these scenarios, a dataset is generated using Algorithm1. Algo-

rithm1 generates random variables ranging from 0 to 100 corre-

sponding to the sample ultrasonic sensor readings. This data is

generated for all the sensors to train and test the proposed ANFIS

controller. This data is used as the input for the ANFIS. The output

of the FIS is one of the pre-defined steering control as given in

Table 2 that are governed by stated rules. Based on these rules,

the test and training samples for the dataset are generated using

Algorithm1. The first column of the dataset represents the left,

right, and front sensor data. At the same time, the last column rep-

resents the output steering angle. The proposed ANFIS is trained

utilizing the generated dataset.

Table 1

The consequent parameters corresponding to each rule.

Rule If-then Statement Consequent Parameters

L1 F2 R3 pj qj rj sj

1 near near near 0.03807 -0.00715 0.03765 179.900

2 near near mid 0.00102 0.00807 0.00466 89.7085

3 near near far 0.01188 0.01030 0.00186 90.0044

4 near mid near 0.01363 0.01199 -0.02079 -0.56030

5 near mid mid 0.02153 0.00339 -0.00172 44.7967

6 near mid far 0.01498 0.00182 -0.00237 45.0038

7 near far near 0.01113 -0.00505 -0.00664 0.39617

8 near far mid 0.00896 0.00178 -0.00483 45.0320

9 near far far 0.01956 -0.00037 -0.00583 45.4269

10 mid near near 0.01188 0.00044 -0.04086 -90.5869

11 mid near mid 0.00133 0.02673 -0.00855 90.2378

12 mid near far -0.00235 0.03727 -0.00547 90.3346

13 mid mid near 0.00120 -0.00265 -0.00439 -44.9368

14 mid mid mid 0.00265 0.00673 -0.00211 -0.39972

15 mid mid far 0.00282 0.00437 0.00078 -0.44664

16 mid far near 0.00256 -0.00301 -0.01107 -44.8034

17 mid far mid 0.00402 0.00447 -0.00343 -0.41950

18 mid far far 0.00176 0.00019 -0.00043 -0.07333

19 far near near 0.01817 0.00032 -0.05745 -91.2705

20 far near mid 0.00134 0.03862 -0.01989 90.6243

21 far near far -0.00022 0.01739 -0.00318 90.2187

22 far mid near 0.00041 -0.00293 -0.01240 -44.8319

23 far mid mid 0.00157 0.00563 -0.00327 -0.26821

24 far mid far -0.00100 0.00517 -0.00048 -0.14669

25 far far near 0.00142 0.00270 -0.01275 -45.2858

26 far far mid 0.00019 -0.00061 -0.00233 0.15740

27 far far far 0.00019 0.00034 -0.00017 -0.03242

Fig. 5. Various cases for averting obstacles in a cluttered environment. The robot continuously collects surrounding data using sonar sensors and passes it to the ANFIS

controller for a suitable steering angle if an obstacle exists. The arrow represents the steering angle in case of an obstruction.

Table 2

Dataset generation steering controls for ANFIS training.

Case Obstacle Orientation Steering Angle

1 Left 45

2 Right �45 (anticlockwise)

3 Left Front Corner 90

4 Right Front Corner �90 (anticlockwise)

5 Corridor 0

6 Left, Front and Right 180

7 Front 90
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3. Experiments and results

This section provides details about the experiment, the related

tools, and environment settings, followed by the simulation results

and some discussion on the results.

3.1. Experiment details

This subsection provides details about the experiment settings

and the dataset.

Simulation platform: CoppeliaSim (developed by Coppelia

Robotics and previously known as V-REP) is a 3D robotics simula-

tion platform with an integrated development environment that

allows to model, edit, program a robot using sensors and perform

simulations (Rohmer et al., 2013; Freese et al., 2010). It provides

a plethora of features that can be easily integrated and combined

with an extensive API and script functionality. MATLAB is inte-

grated with CoppeliaSim to verify the proposed approach in this

research work. All the testing and training are carried out in Cop-

peliaSim 4.2.0 and MATLAB 2021a.

Robot characteristics: A wheeled mobile robot ’Pioneer 3-DX’,

with multiple obstacles and a destination point, is included in the

simulation scenes. Pioneer 3-DX robot has two front wheels with

independent motor control and a passive omni wheel at the rear

to balance the robot structure. The speed of the mobile robot is

0.2 m/s for all simulations.

Dataset: As mentioned earlier in subSection 2.4, the dataset is

generated using Algorithm1 for 10,000 random samples of left,

right, and front sensor distances. Further, based on the threshold,

a label (steering angle) is assigned to the input sensor data. The

randomly generated data is synthetic in nature. However, it largely

resembles the real-life robot sensor data.

Training and testing: For experiments, 25% of the dataset is

utilized to test ANFIS, while 75% of the dataset is used to train

the ANFIS. A slightly larger test set is used to study the proposed

model’s generalization capability and the performance response

in real-world scenarios. To study in-depth and provide a clear pic-

ture to the readers, we generated two FIS using subtracting cluster-

ing and grid partitioning methods and tested for collision

avoidance from obstacles, but they exhibited poor performance.

Hence, a FIS is designed based on experience and literature studies

(Jang, 1993). The final membership functions after training ANFIS

under-designed FIS are shown in Fig. 6. ANFIS modifies the mem-

bership functions of FIS during the course of the training process.

It also gradually reduces the error in the output steering angle,

making it more accurate. Table 1 provides the post-training conse-

quent parameters for all the 27 linguistic rules. Root mean square

error (RMSE) validates the performance of the proposed FIS as

given in Eq. 14. Fig. 7 shows the root mean square error (RMSE)

of the sub clustering, grid partition, and the proposed ANFIS con-

troller. The proposed FIS offers much accuracy over the subtracting

clustering and grid partitioning methods. The testing data results

verify that ANFIS has been trained accurately and efficiently.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

i¼1

ŷi � yið Þ
2

n

v

u

u

t ð14Þ

Where ŷ1; ŷ2; . . . ; ŷn represent predicted data, y1; y2; � � � ; yn represent

actual data, and n represent the number of iterations.

3.2. Simulation studies

The effectiveness of the proposed hybrid ANFIS is evaluated in

this section using simulations. The robot first measures the dis-

tance between itself and obstacles during the simulation process

under the obstacle avoidance behavior. If there are no obstacles

nearby, the robot then switches to the target navigation behavior

to determine the desired heading angle towards the destination.

The mobile robot continuously measures the obstacle distances

and desired angle, as illustrated in detail in earlier sections, and

takes decisions accordingly. Fig. 8(a) and and Fig. 8-(b) shows

autonomous mobile robot navigation and obstacle avoidance for

two clutter environments. Simulation results for the dense clutter

environment for two different destinations have been illustrated in

Fig. 8(c) and Fig. 8-(d), respectively. In all scenarios, the robot is

unfamiliar with the map. Like in Fig. 8-(a) after initialization, it

checks to see if there are any obstacles in its immediate area. As

there is no obstacle, it enters the target navigation behavior and

begins moving toward the intended target. However, after moving

a short distance, it encounters an obstacle, at which point it enters

the obstacle avoidance behavior in order to avoid any collisions

with a safe margin. It changes the target navigation behavior once

more and calculates the destination angle after successfully avoid-

ing the first obstacle. This process is repeated until the target is

achieved. Simulation studies distinctly render that the robot can

maneuver autonomously over different obstacles and achieve its

target successfully. From Fig. 8, it is evident that the hybrid pro-

posed motion planning of the autonomous robot based on ANFIS,

GPS, and a heading sensor efficiently makes its way towards the

Fig. 6. Figures from (a)-(c) represent the post-training FIS membership functions for the designed ANFIS controller. All the FIS membership functions have changed shape

under the influence of provided data for training. Notations are the same as provided in Fig. 2. It should be noted that there is a minor difference among all the FIS.

Fig. 7. RMSE plot of sub. clustering, grid partition, and the proposed FIS. It can be

noticed that the proposed FIS has lower RMSE values, and the system converges in

lesser epochs.
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destination without having any collision following a shorter path

as stated in the proposed approach. The robot simulations are car-

ried out in a CoppeliaSim with MATLAB controlling robot steering.

It is worth noting that the performance of the proposed method

does not rely on the obstacle shape so that it can work in most

cases effectively. Simulation studies distinctly render that the

robot can maneuver autonomously over different obstacles and

achieve its target successfully.

A comparison of the proposed method and the other state-of-

the-art methods is presented in Fig. 9. Fig. 9-(a) shows the path fol-

lowed by Neuro-Fuzzy (Zhang et al., 2005), CS-ANFIS (Mohanty

and Parhi, 2015), hybrid ANFIS (Gharajeh and Jond, 2020), and

the proposed method. It can be observed that the proposed method

is successfully capable of reaching the destination point while fol-

lowing a path that is more optimal as compared to Hybrid-ANFIS

(Gharajeh and Jond, 2020) but much improved as compared to

the path estimated by Neuro-Fuzzy (Zhang et al., 2005), and CS-

ANFIS (Mohanty and Parhi, 2015). Moreover, Fig. 9-(b) presents a

scenario with a dense obstacles environment. It can be seen that

the proposed method follows the near-optimal path as compared

to fuzzy logic (Lakhmissi and Boumehraz, 2013), CS-ANFIS

(Mohanty and Parhi, 2015), and hybrid ANFIS (Gharajeh and

Jond, 2020). Similarly, Fig. 9-(c) presents a path planning compar-

ison with Hybrid ANFIS (Gharajeh and Jond, 2020) and ANFIS con-

troller (Pothal and Parhi, 2015). It should be noticed that the

environment is highly cluttered, and the proposed method follows

the most optimal path to reach the final destination. Furthermore,

an environment with obstacles having various sizes and shapes is

presented in Fig. 9-(d). Regardless of the difference in sizes and

shapes of the obstacles, the proposed method follows the near-

optimal path as compared to MANFIS (Al-Mayyahi et al., 2014).

3.3. Statistical analysis

We conducted the Friedman rank-sum non-parametric statisti-

cal test with a 95% confidence level to ascertain the statistical sig-

nificance of all competing methods with respect to the metric

variables PP, Rules, CP, and time. The null hypothesis is defined

as no statistical difference among all competing methods in this

work. We then use the Nemenyi post hoc test to check the differ-

ences if the null hypothesis is rejected. The null hypothesis is

rejected when the reported p-value of common significance is less

than 0.05. The analysis is conducted on the average accuracy and

average rank of all results as reported in Table 3. From Table 3,

the p-value calculated for the competing methods in Fig. 9-(a) is

0.008. This p-value shows that our proposed method statistically

differs from all competing methods. The Nemenyi post hoc test is

further used to measure the true difference by constructing the

critical difference diagram using the average ranks as given in

Fig. 10-(a). The critical difference between the competing methods

is 2.35.

For the competing methods in Fig. 9-(c), the reported p-value is

0.03, which rejects the null hypothesis. Specifically, our method is

statistically different as compared to the competing methods. From

Fig. 10-(b), the critical difference calculated from the Nemenyi post

hoc test is 1.91. The p- values calculated for the competing

Fig. 8. Various scenes of autonomous mobile robot navigation and obstacle avoidance. (a) and (b) represents a 3D view of the obstacle avoidance and navigation of the robot.

The line indicates the path followed from the start point to the target. Moreover, (c) and (d) represent a top view of autonomous obstacle avoidance and navigation in densely

cluttered environments.

Fig. 9. This figure shows the paths followed by various methods. The sub figure (a) represents the path followed by Neuro-Fuzzy (Zhang et al., 2005), CS-ANFIS (Mohanty and

Parhi, 2015), hybrid ANFIS (Gharajeh and Jond, 2020), and the proposed method in a cluttered environment. Similarly, (b) represents path planning and obstacle avoidance in

a different cluttered environment among (Lakhmissi and Boumehraz, 2013; Mohanty and Parhi, 2015), hybrid ANFIS (Gharajeh and Jond, 2020), and the proposed method.

The subfigure (c) represents obstacle avoidance and path planning in a densely cluttered environment by hybrid ANFIS (Gharajeh and Jond, 2020), ANFIS controller (Pothal

and Parhi, 2015) and the proposed method. Furthermore, (d) presents a comparison of the path followed by MANFIS (Al-Mayyahi et al., 2014) and the proposed method in a

densely cluttered environment with obstacles having different shapes and sizes.
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methods in Figs. 9-(b) and 9-(d) are 0.11 and 0.13. Though the

p-values for these two experiments do not show a statistically

significant difference between the competing methods, our

method has the fastest computational time and has a time perfor-

mance gain of 0.3s and 3.4s as compared to the second-best time

performance algorithms, hybrid ANFIS and MANFIS respectively.

3.4. Discussions

The proposed ANFIS only contains nine neurons for further pro-

cessing. In contrast, others may need hundreds or more like the

neural network presented in (Marichal et al., 2001 and Bozek

et al., 2020) have 240 and 360 nodes in their first layers, respec-

tively. Moreover, ANFIS is designed just with 27 rules, relatively

fewer than other approaches. Generally, they need hundreds of

rules, like FNN(Lv et al., 2021), which needs 160 rules (Rath

et al., 2018) needs 256 rules, and invasive weed optimization

(IWO)-based ANFIS (Parhi and Mohanty, 2016) needs 727 rules. A

hybrid intelligent path planner (Mohanty and Parhi, 2015) based

on ANFIS is designed to navigate a mobile robot. This method uses

a single ANFIS controller to process inputs from the left, right, and

front sensors, but it also requires the heading angle in addition to

the left and right wheel velocities to calculate the correct steering

angle. It indicates that the robot already knows the global path. In

addition, this controller necessitates 727 rules for ANFIS’s local

path planning to be completed. It must also determine how to opti-

mize 54 premise parameters and 5089 consequent parameters for

training and testing, which makes it highly complex with high cal-

culation time. A navigation controller (Subbash and Chong, 2019)

for a mobile robot with a differential drive that is based on ANFIS

actively plans local paths and avoids obstacles. However, this sys-

tem requires two independent controls to manage the robot’s left

and right velocities. To gather the data set for the training and test-

ing of the two ANFIS controllers, an additional fuzzy logic-based

controller is required, doubling the effort and workload of the

designer. In addition, this controller has difficulties adapting to

new environments.

Fig. 9-(a) shows the comparison of the proposed approach with

the neuro-fuzzy method (Zhang et al., 2005), CS-ANFIS (Mohanty

and Parhi, 2015), hybrid ANFIS-GPS (Gharajeh and Jond, 2020),

and the proposed approach. It can be seen that the proposed

approach shows better performance as compared to both stated

techniques. The quantitative results of the real-time simulations

and other parameters of the other state-of-the-art methods are

presented in Table 3. The proposed approach shows about 20%

improvement in achieving the target in the same environments

with minimum parameters employing a single ANFIS controller.

Premise parameters and consequent parameters increase the sys-

tem’s complexity drastically. It can be observed that the neuro-

fuzzy approach given in (Zhang et al., 2005) shows poor results

as the path found is much longer than other techniques for mobile

robot navigation.

CS-ANFIS (Mohanty and Parhi, 2015) reduced the consequent

parameters from 765 to 405, but the path length remains long as

the turning angles are less precise and it deviates to an extent from

the destination. The hybrid ANFIS (Gharajeh and Jond, 2020)

reduced the consequent parameters from 405 to 108. However,

multiple turns to avoid the first obstacle add up to more travel dis-

tance and delays in reaching the destination. The proposed

approach shows an improvement of 18.94% in achieving the target

in the same environments with minimum parameters using a sin-

gle ANFIS controller.

The authors (Lakhmissi and Boumehraz, 2013), have worked on

a fuzzy logic method for obstacle avoidance and navigation of

mobile robots. The simulation results of fuzzy logic (Lakhmissi

and Boumehraz, 2013), CS-ANFIS (Mohanty and Parhi, 2015),

hybrid ANFIS-GPS (Gharajeh and Jond, 2020), and proposed

approach are presented in Fig. 9-(b) for comparison. The authors

(Lakhmissi and Boumehraz, 2013) only used fuzzy logic. It is not

efficient to find the goal and generates a long path as unnecessary

detours are found while executing the target navigation and

Fig. 10. (a) Represents Nemenyi test on competing methods Neuro-Fuzzy (Zhang et al., 2005), CS-ANFIS (Mohanty and Parhi, 2015), hybrid ANFIS (Gharajeh and Jond, 2020),

and the proposed method in a cluttered environment as presented in Fig. 9-(a). Similarly, (b) Represents Nemenyi test on competing methods in another densely cluttered

environment among hybrid ANFIS (Gharajeh and Jond, 2020), ANFIS controller (Pothal and Parhi, 2015) and the proposed method as provided in Fig. 9-(c).

Table 3

Real time simulations and paramerters comparison. Additionally, PP represents Premise Parameters while CP denotes the number of Consequents Parameters. The bold values

represent superior values and #denotes that the lesser is better.

Figure Method Controllers # PP # Rules # CP # Time (S) #

9(a) Neuro Fuzzy Two 32 45 765 13.2

CS ANFIS Single 36 81 405 11.35

Hybrid ANFIS Single 27 27 108 11.15

Proposed Single 27 27 108 10.7

9(b) Fuzzy Logic Two 26 56 12 14.65

CS ANFIS Single 36 81 405 12.8

Hybrid ANFIS Single 27 27 108 12.25

Proposed Single 27 27 108 11.95

9(c) ANFIS Controller Single 48 256 1280 10.85

Hybrid ANFIS Single 27 27 108 9.35

Proposed Single 27 27 108 8.65

9(d) MANFIS Four 125 137 137 16.9

Proposed Single 27 27 108 13.5
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obstacle avoidance behavior. Similarly, CS-ANFIS (Mohanty and

Parhi, 2015) method induces big curved turns resulting in a long

path. Hybrid ANFIS-GPS (Gharajeh and Jond, 2020) can effectively

navigate the target but obstacle avoidance behavior is not precise

and multiple turns are seen while avoiding obstacles. The proposed

method shows better results than the neuro-fuzzy (Zhang et al.,

2005) method, CS-ANFIS (Mohanty and Parhi, 2015), and hybrid

ANFIS-GPS (Gharajeh and Jond, 2020). The performance evaluation

regarding path length is shorter than the neuro-fuzzy (Zhang et al.,

2005) method, CS-ANFIS (Mohanty and Parhi, 2015), and hybrid

ANFIS-GPS (Gharajeh and Jond, 2020). Fig. 9-(c) shows the naviga-

tion and obstacle avoidance comparison in a cluttered environ-

ment of the proposed approach, the work of (Pothal and Parhi,

2015; Gharajeh and Jond, 2020). The authors (Pothal and Parhi,

2015 and Gharajeh and Jond, 2020), have designed the method

for robots to navigate through the environment using ANFIS. ANFIS

controller (Pothal and Parhi, 2015) demonstrates the poor ability to

follow the target navigation and turns away from the original

course of direction losing its efficiency. Simulation results show

that the proposed hybrid ANFIS-sensor fusion approach is more

efficient as it provides a shorter path. Mayyahi (Al-Mayyahi et al.,

2014) used four ANFIS controllers to navigate and avoid multiple

obstacles. The comparison of the MANFIS (Al-Mayyahi et al.,

2014) and the proposed approach is presented in Fig. 9-(d). The

comparison shows that the path found by the proposed hybrid

approach is near-optimal and shows around 20% more efficacy

than other approaches in all scenarios.

4. Conclusion

This study proposes a novel hybrid navigation approach for

autonomous path planning of mobile robots in cluttered environ-

ments. The approach illustrates the amalgamation of ANFIS for

local motion control, whereas GPS and heading sensor for the glo-

bal motion control. The proposed novel approach is more robust as

it only requires 27 rules and 108 consequent parameters opposing

hundreds of rules and thousands of consequent parameters com-

pared to conventional neuro-fuzzy and ANFIS based approaches.

Moreover, all the consequent parameters and rules are evaluated

and clearly presented in this research work. The proposed

approach is adaptive to new environments without additional

training and has better repeatability to achieve the target. Addi-

tionally, the proposed obstacle avoidance method is independent

of obstacle shape and size. The proposed approach maintains the

physical and linguistic meaning of the parameters during the nav-

igation and execution process, while conventional approaches lack

this ability. We performed comprehensive experiments, and the

results show 20% better efficacy of the proposed hybrid approach

as compared to the state-of-the-art methods.

5. Future work

For our future work, we aim to enhance ANFIS and sensor

fusion-based hybrid approach to solve the swarm autonomous

navigation robotics problem along with hardware-based

experiments.
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