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Abstract—Lane detection is very important for self-driving
vehicles. In recent years, computer stereo vision has been preva-
lently used to enhance the accuracy of the lane detection systems.
This paper mainly presents a multiple lane detection algorithm
developed based on optimised dense disparity map estimation,
where the disparity information obtained at time tn is utilised
to optimise the process of disparity estimation at time tn+1

(n ≥ 0). This is achieved by estimating the road model at time tn

and then controlling the search range for the disparity estimation
at time tn+1. The lanes are then detected using our previously
published algorithm, where the vanishing point information is
used to model the lanes. The experimental results illustrate that
the runtime of the disparity estimation is reduced by around
37% and the accuracy of the lane detection is about 99%.

Index Terms—lane detection, self-driving vehicles, stereo vi-
sion, disparity estimation, vanishing point.

I. INTRODUCTION

THE deployment of autonomous vehicles has been in-

creasing rapidly since Google first launched their self-

driving car project in 2009 [1]. In recent years, with a

number of technology breakthroughs being witnessed in the

world where science fiction inventions are now becoming a

reality, the competition to commercialise driver-less vehicles

by companies like GM, Waymo and Daimler-Bosch is fiercer

than ever [2]. For instance, Volvo conducted a series of self-

driving experiments involving around 100 cars in China [3].

The 5G network is also utilised in self-driving vehicles to

help them communicate with each other [2]. Furthermore, the
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computer stereo vision technique has also been prevalently

used in prototype vehicle road tests to provide the depth

information for various automotive applications, e.g., road

condition assessment [4], [5], lane and obstacle detection [3],

[6], and vehicle state estimation [7], [8].

The state-of-the-art lane detection algorithms can mainly be

classified as feature-based and model-based [6]. The former

extracts local and useful information of an image, such as

edges, texture and colour, for the segmentation of lanes and

road boundaries [9]. On the other hand, the model-based algo-

rithms aim to represent the lanes with mathematical equations,

e.g., linear, parabolic, linear-parabolic and spline, based upon

some common road geometry assumptions [10]. The linear

model works well for lanes with a low curvature [3], but

a more flexible road model is inevitable when lanes with a

higher curvature are considered. Therefore, some algorithms

[11]–[14] use a parabolic model to represent the lanes with

a constant curvature. To address some more complex cases,

Jung et al. proposed a combination of linear and parabolic

lane models, where the far lanes are modelled as parabolas

whereas the nearby lanes are represented as linear models [15].

In addition to the models mentioned above, the spline model

is an alternative method whereby the lane pixels are interpo-

lated into an arbitrary shape [10], [16]. However, the more

parameters introduced into a flexible model, the higher will

be the computational complexity of the algorithm. Therefore,

some authors resort to additional important properties of 3-D

imaging techniques, such as disparity estimation [6], instead

of being limited to only 2-D information.

One of the most prevalently used 3-D based methods is

Inverse Perspective Mapping (IPM). With the assumption that

two lanes are parallel to each other in the World Coordinate

System (WCS), IPM can map a 3-D scenery into a 2-D

bird’s eye view [17]. In addition, some authors [18]–[21]

proposed to use the vanishing point pvp = [uvp, vvp]
⊤ to

model lane markings and road boundaries, where uvp and

vvp denote the vertical and horizontal coordinates of the

vanishing point, respectively. An example of vanishing point

is illustrated in Fig. 1, where l1 and l2 are two parallel

straight lines. Two 3-D points p1
W and p2

W in the WCS

are projected on the image plane π and their corresponding

points in the Image Coordinate System (ICS) are p1 and

p2, respectively. Therefore, the projections of l1 and l2 in

the image are two straight lines and they intersect at the

vanishing point pvp. However, their algorithms work well

only if the road surface is assumed to be flat or the camera
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Fig. 1. Vanishing point.

parameters are known. Hence, some researchers pay closer

attention to the disparity information which can be obtained

using either active sensors, e.g., radar and laser, or passive

sensors, e.g., stereo cameras [21]. Since Labayrade et al.

proposed the concept of “v-disparity” in 2002 [22], disparity

information has been widely used to enhance the robustness

of the lane detection systems. The work presented in [21]

shows a particular instance where the disparity information

is successfully combined with a lane detection algorithm to

estimate pvp for both flat and non-flat road surfaces. At

the same time, the obstacles containing a lot of redundant

information can be eliminated by comparing the actual and

fitted disparity values. However, the estimation of pvp is

greatly affected by the outliers when performing the Least

Squares Fitting (LSF), and the lanes are sometimes wrongly

detected because the selection of plus-minus peaks is not

always effective. Moreover, achieving real-time performance is

still challenging in [21] because of the intensive computational

complexity of the algorithm. Hence in this work, we propose

a more efficient lane detection algorithm where the disparity

information acquired at time tn−1 is utilised to improve the

process of the disparity estimation at time tn. The flow chart

of the proposed lane detection algorithm is depicted in Fig. 2.

Firstly, we create a vector α = [α0, α1, α2]
⊤ to store

the parameters of the road model. The keypoints P =
[p0,p1, . . . ,pn]

⊤ and Q = [q0, q1, . . . , qn]
⊤ are then ex-

tracted and matched using Binary Robust Invariant Scalable

Keypoints (BRISK), where pn = [upn, vpn]
⊤ and qn =

[uqn, vqn]
⊤ denote the matched keypoints in the left and right

images, respectively. P and Q are then utilised to create

a sparse v-disparity histogram from which the road model

f(v) = α0+α1v+α2v
2 can be estimated. The search range for

the disparity estimation at time t0 is subsequently controlled

according to f(v), where the search range at row v is limited

to [f(v) − τ, f(v) + τ ]. The lanes are then detected using

our previously published method in [21]. As for the disparity

estimation at time tn+1 (n ≥ 0), α is estimated by creating a

dense v-disparity map using the disparity information acquired

at time tn (n ≥ 0) and then fitting a parabola to the best

path extracted from the dense v-disparity map. This not only

improves the accuracy of the disparity estimation at time tn+1

but also boosts its processing speed.

The remainder of the paper is structured as follows: Section

II presents the proposed lane detection algorithm. In Section

Fig. 2. Flow chart of the proposed algorithm.

III, the experimental results are illustrated and the evaluation

of the proposed system is carried out. Finally, Section IV

summaries the paper and provides some recommendations for

future work.

II. ALGORITHM DESCRIPTION

A. Disparity Estimation

The proposed disparity estimation approach in this paper is

developed based on our previously published algorithm [2],

where the search range at the position of (u, v) is propagated

from three estimated disparities at the positions of (u− 1, v),
(u, v) and (u + 1, v). In this subsection, we optimise the

process of the disparity estimation by utilising the disparity

information acquired at time tn−1 to control the search range

at time tn, where n is a positive integer.

As for the stereo matching at time t0, the parameter vector

α = [α0, α1, α2]
⊤ is first initialised as [0, 0, 0]⊤. Then,

α is estimated by solving a least squares problem with a

set of reliable correspondences P = [p0,p1, . . . ,pn]
⊤ and

Q = [q0, q1, . . . , qn]
⊤. In this paper, we use BRISK to

detect and match P and Q. It allows a faster execution to
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(a) (b)

Fig. 3. Road model estimation for the initial stereo image pair. (a) BRISK-based on-road keypoints extraction and matching between the left and right images.
(b) the corresponding sparse v-disparity histogram of Fig. 3(a).

(a)

(b)

(c)

Fig. 4. Disparity map estimation at time tn. (a) n = 0. (b) n = 1. (c)
n = 38.

achieve approximately the same number of correspondences

as SURF (Speeded-Up Robust Features) and SIFT (Scale-

Invariant Feature Transform) [23]. An example of keypoints

detection and matching is shown in Fig. 3(a). The corre-

spondences are then utilised to create a sparse v-disparity

histogram as shown in Fig. 3(b). The values of α0, α1 and

α2 can then be obtained by fitting a parabola to the non-zero

candidates in the sparse v-disparity map. Since the outliers

can severely affect the accuracy of the LSF, Random Sample

Consensus (RANSAC) is utilised to iteratively update α until

the ratio r = nI/(nO + nI) reaches a maximum value,

where nI and nO represent the number of inliers and outliers,

respectively. Then, the search range at row v is limited to

[f(v) − τ, f(v) + τ ], where τ is a threshold set to 3. The

estimated disparity map at time t0 is shown in Fig. 4(a).

Afterwards, the disparity information acquired at time tn−1

(n > 0) is utilised to create a dense v-disparity map. The

latter is then optimised using Dynamic Programming (DP) and

the optimum solution corresponds to the vertical road profile.

More details are provided in subsection II-C. The optimum

solution is then interpolated into a quadratic polynomial and

the values of α0, α1 and α2 at time tn−1 can be obtained. The

parameter vector α at time tn−1 is then used to control the

(a)

(b)

Fig. 5. Bilateral filtering and edge detection. (a) the result of bilateral filtering.
(b) the edge detection result of Fig. 5(a).

search range at time tn according to the strategy mentioned

above. The estimated disparity maps at time t1 and t38 are

illustrated in Fig. 4(b) and Fig. 4(c), respectively.

B. Image Segmentation and Edge Detection

1) Bilateral Filtering: The input image is always noisy,

making various edge detectors such as Sobel and Canny very

sensitive to the blobs [6]. Therefore, we first perform bilateral

filtering on the input image to reduce redundant information

while still preserving the edges. The filtered image is shown

in Fig. 5(a).

2) Road Model Estimation: As discussed in subsection

II-C, the boundary between the road and sky v = vvp|min

can be obtained by solving a quadratic function f(v) = 0.

Furthermore, the road area can be extracted by computing

the difference between the actual and fitted disparity values,

i.e., d̃ and f(v), and then finding the pixels that meet the

requirement of d̃(u, v) ∈ [max{0, f(v)−µ}, f(v)+µ], where

µ is a threshold set to remove the pixels on the obstacles [6].

3) Edge Detection: In this subsection, we use Sobel opera-

tor to detect the edge information by convolving the horizontal

and vertical Sobel operators with the original image [3]. The

corresponding edge detection result is shown in Fig. 5(b).

C. Lane Detection

DP is an optimisation method which aims at solving a

complicated problem by breaking it down into a series of sim-

pler sub-problems [6]. According to our previously published

algorithm in [21], DP is performed to minimise the energy

function in Eq. 1, where E represents the total energy and the

path with the minimum E is selected as the optimum solution.
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(a)

(b)

Fig. 6. Dense pvp estimation. (a) dense v-disparity map. The path in blue
represents f(v). (b) dense uvp map. The path in blue represents g(v).

Edata depends on the total votes each accumulator gets and

Esmooth with a smoothness constant λ, penalises the changes

in pvp.

E = Edata + λEsmooth (1)

In this section, DP is first utilised to optimise the v-disparity

map by minimising the energy function in Eq. 2. The blue path

in the v-disparity map is the optimum solution, as shown in

Fig. 6(a). The optimum solution is then interpolated into a

quadratic polynomial: f(v) = α0 +α1v+α2v
2, and vvp with

respect to each row can thus be computed.

E(v)d = −mv(d, v)

+ min
τv

[E(v − τv)d+1 − λvτv], s.t. τv ∈ [0, 6]
(2)

Then, DP is used to optimise the dense uvp accumulator by

minimising the energy function in Eq. 3. The blue path in the

dense uvp accumulator map is the optimum solution, as shown

in Fig 6(b). uvp with respect to each row can then be estimated

by interpolating the optimum solution into a quadruplicate

polynomial: g(v) = β0 + β1v + β2v
2 + β3v

3 + β4v
4.

E(u)v = mu(u, v)

+ min
τu

[E(uvp + τu)v+1 + λuτu], s.t. τu ∈ [−5, 5]
(3)

pvp provides the tangential direction and the curvature

information of lanes, which can help to validate the lane

positions. In our previous paper [21], a likelihood function

V (pe) = ∇(pe) · cos(θpe
− θpvp

) is formed for each edge

point pe and the plus-minus peak pairs are selected for lane

visualisation, where θpe
is the angle between the u-axis and

the orientation of the edge point pe, and θpvp
is the angle

between the u-axis and the radial from an edge pixel pe to

pvp(ve). More details are provided in [21], [24]. The lanes

can thus be visualised using f(v), g(v) and V (pe). Some

examples of lane detection results are shown in Fig. 7.

III. EXPERIMENTAL RESULTS

In this section, we use the KITTI dataset to quantify the

robustness of the proposed algorithm. Some experimental

results are shown in Fig. 7, where the green regions are the

estimated road areas and the lines in red are the detected lanes.

TABLE I
DETECTION RESULTS OF THE PROPOSED ALGORITHM.

Sequence Lanes Incorrect detection Misdetection

1 860 0 0

2 594 0 0

3 376 0 0

4 156 0 3

5 678 0 9

6 1060 10 2

Total 3724 10 14

TABLE II
DETECTION RESULTS OF [21].

Sequence Lanes Incorrect detection Misdetection

1 860 0 0

2 594 0 0

3 376 0 0

4 156 0 9

5 678 0 17

6 1060 14 7

Total 3724 14 33

Currently, it is impossible to access a satisfying ground truth

dataset for the evaluation of lane detection algorithms because

accepted test protocols do not usually exist [25]. Therefore,

many publications related to lane detection only compare the

quality of their experimental results with the ones obtained

using some other published algorithms [21]. For this reason,

we compare the performance of the proposed system with [21].

Table I and Table II details the successful detection rates of

the proposed algorithm and the algorithm presented in [21],

respectively. The overall successful detection rate is around

99% and it is increased by around 0.6%.

In addition, the proposed algorithm is implemented in C

programming language. The runtime of the algorithm for a

single frame with a resolution of 1242× 375 is 0.21 seconds

(using a single thread of Intel Core I7-8700K CPU). By

controlling the search range at time tn using the disparity

information acquired at time tn−1, the runtime of the disparity

estimation is reduced by around 37%. Although the algorithm

does not perform in real time, we believe that the execution

speed of the implementation can be further accelerated by

highly exploiting the parallel computing architecture.

IV. CONCLUSION AND FUTURE WORK

This paper presented a multiple lane detection algorithm.

The process of the disparity estimation is optimised by using

the disparity information acquired at time tn to suggest the

search range at time tn+1 (n ≥ 0). This not only improved

the accuracy of the estimated disparities but also reduced

the runtime of the algorithm. The runtime of the disparity

estimation is reduced by approximately 37%. The lanes were

detected using our previously published algorithm in [6], [21].

The experimental results illustrated that the proposed system

works robustly and precisely for both highway and urban
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Fig. 7. Experimental results. The regions in green are estimated road surface areas. The lines in red are detected lanes.

scenes and a 99% successful detection rate was achieved when

processing the KITTI dataset.

However, some actual road conditions may result in failed

detections. Therefore, we plan to train a deep neural network

for dense vanishing point estimation. Furthermore, we plan

to implement the proposed algorithm on some state-of-the-art

embedded systems, such as Jetson TX2 for real-time purposes.
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